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The genetic algorithm (GA), written to allow automatic analysis of optical re¯ ectivity data
obtained from liquid crystal cells using the half-leaky guided mode technique, has been
developed to the point where liquid crystal cells can be analysed successfully giving greater
detail of optical parameters and director pro® le than yielded by any other technique. The
technique models the liquid crystal layer as a set of discrete, independent sub-layers which
can map out the variation of the director through the thickness of the cell. Given su� cient
high quality data, it is now possible automatically and accurately to ® t the parameters of a
complete liquid crystal cell. Using this highly adapted GA, half-leaky guided mode optical
re¯ ectivity data from the nematic, smectic A and smectic C* phases of SCE13 in a surface
stabilized ferroelectric liquid crystal have been ® tted to reveal director pro® les and optical
parameters of the cell in each phase.

1. Introduction director through the cell. This has allowed half-leaky
guided mode optical re¯ ectivity data from the nematic,The half-leaky guided mode (HLGM) technique was

developed almost a decade ago [1, 2], but is still little smectic A and smectic C* phases of a typical surface
stabilized ferroelectric liquid crystal (SSFLC) cell toused in the elucidation of the structures found within

liquid crystal cells, a task for which it is ideally suited. be ® tted.
The di� culty of the data ® tting process and the lack of
ability to prove the uniqueness of the results are the pri- 2. HLGM technique

Optical polarizing microscopy integrates the opticalmary reasons for this. Were it not for these impediments,
the technique could be widely used as a basic tool by response through the entire thickness of the cell and so

gives little detailed information about the structureLC workers.
HLGM was recently [3] combined with a genetic within it. X-rays can only provide information about

the layering within a cell. Even with their combined use,algorithm-based ® tting routine with great success. This
was a major step in making the HLGM technique viable it is di� cult to obtain any detailed information about

the spatial variation of the director through the cell.as a uniquely powerful research tool to help answer
questions over the details of director pro® les within cells Knowledge of this would give a much fuller picture of

the structures assumed and the processes undergonewith complex mesophases and structures. However, since
the LC layer was modelled as a single block with twist inside the cell during switching. This information could

then be used to predict cell behaviour. The half-leakyand tilt values linearly interpolated between pairs of
values, the procedure as used was of limited utility. guided mode technique [1, 2] is a powerful probe that

can give details of the way in which the director variesThe work presented here summarizes what has since
been achieved by adding detail to the mapping of the through the cell. The technique can be applied to any

type of liquid crystal cell, or any material that can bedirector pro® le of the liquid crystal layer, from a starting
point of modelling it as a single slab, to breaking it into contained within a waveguide structure.

Polarized laser light is used to probe the liquid crystala set of layers capable of following the variation of the
layer. As the angle of incidence is varied, there are a
number of angles at which waveguide modes are excited.*Author for correspondence.
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496 D. J. Mikulin et al.

The re¯ ected light is detected and each time a mode is by the increasingly reduced rate of improvement as the
excited, there is a dip in the re¯ ectivity. The size, shape number of generations increases. This method of multiple
and position of the modes form a complex function related runs is found to be very robust (for this particular problem)
to the optical properties of the multilayer structure. By in not excluding the actual parameter values from the
® tting the re¯ ectivity trace to one generated theoretically bounds, which is found to be a problem when reducing
by applying Fresnel’s equations to multilayer optics, the bounds from the results of a single run.
parameters characterizing the multilayer structure can
be estimated. Hitherto, this ® tting process was primarily
manual and extremely time consuming, with the need 4. Detailing the problem using theoretical smectic
to ® nd dozens of parameters simultaneously. Further, director pro® les
the ® nal answer may be strongly prejudiced by the In the work detailed in [3], modelling of a nematic
assumptions of the person ® tting the data. phase was approximated by a single liquid crystal

layer that had linearly interpolated twist and tilt values
3. Genetic algorithms between the two pairs of ® tted parameters ( the values

Genetic algorithms (GAs) [3± 8 ] are one of several at the surfaces of the layer). Modelling of the smectic A
general purpose stochastic search and optimization phase is even simpler than the nematic phase if it is
methods based on the principles of natural selection and assumed that there is only a single value of twist and
natural genetics. Such algorithms navigate through the tilt through the cell (the rigid bookshelf structure). This
search space using a binary coded population of potential can be easily implemented using the previous model
solutions. Population members, or solutions, which for the nematic phase, by keeping the top and bottom
better describe the problem are given higher values of surface twists and tilts equal.
® tness and have a higher probability of proceeding to To model the smectic C* phase requires a minimum
the next time step, or generation . Such methods are of two liquid crystal layers to enable a description of the
frequently superior to calculus-based h̀ill-climber’ type chevron structure [13]. When hand-® tting, two layers
data ® tting methods if the search space is large and were initially used. Once a close ® t had been obtained,
highly complex. However, unlike many traditional

the number of liquid crystal layers was then increased
methods, genetic algorithms require tailoring to the task

to four to allow for thin surface layers, then to six to
at hand [9± 12]. In order successfully to ® nd ® ts to the

allow for features around the chevron interface. Often
re¯ ectivity data from model tensor pro® les of nematic

the chevron would be assumed symmetrical about thecells much adaptation was made to a traditional GA as
centre of the layer thereby halving the complexity of thedetailed in [3]. Due to the necessity to be able to prove
® tting (see ® gure 1). If particular liquid crystal pro® lesthat the answers found were the true solution, much of
were expected, the number of liquid crystal layers wouldthe initial development was undertaken on theoretically
be increased in appropriate regions to attempt to obtaincreated data.
greater local detail of the pro® le.The adaptations included the use of multiple runs

In order to allow for much more complex structureswith bound reduction ; approximate ® tness evaluation; a
with the smectic C* phase, a large step was taken in thevariable mutation rate; pre-processing of the experi-
automatic routine by expanding the number of layersmental data; the inclusion of a traditional direct ® tting
within the LC to tenÐ each with its own pairs of valuesroutine. These adaptations were made sequentially and
for starting and ® nishing twist and tilt and individualserve to demonstrate the fact that such evolutionary
thicknesses. The adapted GA with bound reduction wasapproaches can rarely be successfully used in an o� -
seen to home in on the region of the solution relativelythe-shelf manner. The most important change was the
rapidly, but then struggle as it attempted to ® nd theinclusion of sequential bound reduction.
solution to any degree of accuracy.Usually in GAs the parameter bounds are decided

Four data sets were used in the ® tting process,upon and ® xed for the duration of one long continuous
consisting of two polarization combinations at each ofoptimization run. By contrast, an adapted GA, where
two azimuthal cell orientations [3]. This combinationthe algorithm is run for only a few generations, but
removed all the major forms of degeneracy whenmultiple times, is found to be far more e� cient at
® tting nematic cell data, but appeared insu� cient whenapproaching the solution. New bounds are then calcu-
attempting to ® t theoretical smectic C* data. The uselated from the statistical spread of values that each
of more data sets was investigated, but this providedparameter settles upon in each short run. The algorithm
minimal improvement in the ® nal answers, whilst signi-is then re-initialized with these narrower bounds. This
® cantly slowing the ® tting process. Therefore a series ofmethod takes advantage of the characteristic rapid

optimization that occurs initially, without being slowed adaptations to the basic technique were begun.
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497Detailing L C cell director pro® les by GA

Figure 1. When hand-® tting a
complex mesophase, the number
of modelled layers into which
the LC is broken is gradually
increased to add more detail.

Figure 2. Representation of how
the application of a scaling
function to the hyperspace can
help to overcome local optima.
Here, scaling (applied to the
solid line) has increased the
ease of migration to the global
optimum, f * (by producing the
dashed line).

Figure 3. Typical e� ect of b̀oiling’
on the maximum and mean
® tness of a population. The
population is seen to progress
via a series of discontinuities
in ® tness.
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498 D. J. Mikulin et al.

4.1. Approximate ® tness function evaluation less prominent compared with the global optimum to
which the population now hopefully moves. ImplementingIn order to increase the speed of generating a single

estimate of the sum of squares (SOS) error between data this produced a slight improvement in the ® nal quality
of the ® ts obtained, but again these were still not perfect.and theory, a small sub-set of the data was used to reach

an approximate answer quickly. A switch was then made
to the full data set at the end of the routine to ensure 4.3. Inclusion of a variable mutation rate

Another way that potential premature convergence® nal convergence. However, the ® t tended to lock into
a local minimum that was so deep that it never escaped may be reduced is by `boiling’ the population for a few

generations towards the end of each short GA run ineven after the switch to the full data. Reducing the
number of parameters, so that the ten liquid crystal order to increase temporarily the diversity of the popu-

lation. This involves temporarily raising the mutationlayers all had an equal thickness, with separate block
twist and tilt values for each layer, also had only a rate to a very high level. When this is done, the average

® tness of the population is seen to drop sharply andminimal e� ect on the ® nal quality of the ® t. On the
assumption that there was still not enough information then improve. In our implementation, each short GA

run lasted for 30 generations and the population wasin the data to give unique solutions to the large number
of parameters, the number of liquid crystal layers was b̀oiled’ for generations 23± 25 inclusive, allowing ® ve

generations for things to settle down again ( ® gure 3).reduced from ten to four. This on its own did little for
the ® nal quality of ® t, suggesting that it may not be a Such an approach allows the solution vector to overcome

local features in the landscape.simple problem of number of unknowns.
Figure 4 shows the percentage error for each para-

meter in the plot together with a comparison of the4.2. Fitness function adaptation
Since these approaches seemed to have little ability actual and ® tted twist and tilt pro® les. The list of

to improve the ® nal ® t, a di� erent approach was adopted.
The ® tting to date had taken the SOS value created by
the modelling program and used its reciprocal as the
value of ® tness. (The GA is usually presented as a
maximization rather than a minimization routine; thus
in our case ® tness=SOS Õ

1 .) Fits had suggested that
the GA might be prematurely converging to the wrong
answer and becoming stuck in a local optimum. This
may have been due to the fact that SOS Õ

1 rises extremely
rapidly once SOS becomes less than 1. Instead, a linear
function was used: ® tness= (A Õ SOS ) if SOS <A , where
A is a positive valued constant, or else ® tness=0. This
should force slightly more rapid convergence near the
start of the ® tting process, but much slower convergence
once the solution is approached. Analysis of plots of
® tness against generation did indeed show a slower rate
of convergence, and there was a visible di� erence
between the ® nal ® tness and the quality of the ® t to the
director pro® le.

A qualitative picture of the hyperspace emerged as
increasing amounts of model data were analysed. One
possibility for the algorithm having di� culty in reaching
the answer was that there was a broad local optimum
near a dip adjacent to the true global optimum. In this
case, the population would tend to converge onto the
broad local feature (see ® gure 2). Despite being far
better than calculus-based methods at overcoming local
features, if they are extreme enough the GA will also
su� er deception. It is possible to alter the former hyper-
space by scaling the ® tness function ( ® gure 2). Raising Figure 4. Parameter errors and director pro® le comparison
the ® tness function to a positive power (e.g. six) distorts for the very high quality ® t obtained by chance (see the

table for notation).the hyperspace such that the local optimum becomes
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499Detailing L C cell director pro® les by GA

parameter values from the ® nal ® t is quoted together with
with estimated errors. A list of the actual parameters

SOS = �
angles

(DRpp+ DRps )that were used to create the target experimental data is
given in the table. However, the hyperspace is so complex

where w1 and w2 are the two azimuthal angles at whichthat even then the ® nal solution took considerable time
the two data sets data Rpp , Rps are taken;(several hours) to locate on a fast PC.

DRps = (R
theory
ps Õ R

data
ps )

2

4.4. Pre-processing of the experimental data
andOne possibility for improving the e� ectiveness with

which such an algorithm navigates through the search
DRpp= (R

theory
pp Õ R

data
pp )

2
.

space is that of a direct transformation of the experi-
mental data prior to the formation of the SOS function, At every model data point, in each of the four experi-

mental data sets, DRpp or DRps is calculated. Additionalin such a way that gives more weight to the more
important aspects of the data. In the case of data sets tests with varying numbers of points in the half-leaky

region show, as expected, this region to be critical. Thusat two azimuthal angles, we had used ® tness de® ned as:
it was decided to apply a function to the re¯ ectivity

fitness=[100Õ (SOS
w1

+SOS
w2

) ]6
; SOS

w1
+SOS

w2
<100

values to emphasize the deviations between theory and
data in this area.fitness=0; SOS

w1
+SOS

w2
>100

Table. Comparison of real and ® tted values for four LC layer data.

Layer (thickness, d in metres) Parameter Real value Fitted value Ô Error

Matching ¯ uid er 2 9́949 2 9́954 4 2́56E-04
ei 3 0́E-06 3 5́6E-06 1 2́26E-07
d 7 0́0E-04 6 6́6E-04 3 3́90E-05

ITO er 3 8́5 3 8́4 7 4́15E-03
ei 0 0́1 1 3́2E-02 1 1́05E-03
d 6 8́00E-08 6 6́7E-08 9 1́89E-10

Polyimide alignment er1 2 6́93 2 7́35 2 8́26E-02
ei1 0 7́99E-3 7 5́42E-04 6 3́28E-05
er3 2 7́52 2 8́29 6 3́46E-02
ei3 0 8́25E-3 7 8́17E-04 4 8́94E-05
d 2 3́00E-08 3 0́55E-08 3 8́94E-09

Liquid crystal er1 2 1́98 2 1́979 7 4́69E-05
ei1 7 7́E-4 7 3́3E-04 3 2́57E-05
er3 2 5́91 2 5́92 3 5́76E-03
ei3 6 8́E-4 6 7́5E-04 7 4́32E-05

Director pro® le Euler angles/ ß top layer twist 33 1́0 33 2́8 0 2́88
top layer tilt 88 7́0 89 8́2 0 6́30
2nd layer twist 26 2́3 36 2́9 0 2́06
2nd layer tilt 90 1́9 90 3́2 0 4́08
3rd layer twist 39 3́7 39 2́0 0 4́65
3rd layer tilt 91 6́9 91 5́9 1 0́74
bottom layer twist 42 5́0 42 8́5 0 5́79
bottom layer tilt 93 1́8 92 4́9 0 8́49

d 7 9́25E-07 7 9́10E-07 1 5́46E-09

3 Layer index grading on the low index plate er 2 1́700 2 1́641 2 2́89E-03
d 2 5́E-07 2 7́16E-07 4 1́31E-08
er 2 1́600 2 1́601 1 5́36E-04
d 3 0́E-06 2 9́09E-06 5 7́00E-08
er 2 1́440 2 1́461 2 1́48E-03
d 0 5́0E-06 5 0́64E-07 2 7́55E-08

Bulk low index plate er 2 1́403 2 1́405 1 0́54E-04
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500 D. J. Mikulin et al.

Various functions were tried to weight heavily the This scaling function worked well ( ® gure 6). A higher
scaling power was found to reduce the quality of the ® thalf-leaky modes by emphasizing the di� erences between

theory and data, creating a new error estimator, once again.
SOS ¾ . Since, for p-polarized re¯ ectivity data, Rpp , most
features are near a re¯ ectivity of 1, raising the Rpp data 4.5. Use of a ® nal direct search routine

GAs are noted for how quickly they manage to ® ndto a power greater than 1 pulls all the features further
towards 0, enlarging the mode depths. Thus, any di� er- the hills (speaking of maximizing ® tnesses), but can take

a disproportionate length of time actually to climb toence between the R
data
pp and R

theory
pp values is e� ectively

increased. The leaky modes for Rpp data are reduced in the top (the global optimum). It was felt that once the
® t has progressed to the quality of that shown in ® gure 6,importance by the same mechanism, being near 0

re¯ ectivity. then possibly a ® nal direct search might be able to reach
the optimum more quickly.The opposite approach is needed for the polarization-

conversion data, Rps . Being near 0, the modes need to A simple direct search (DS) routine was written based
on the method proposed by Jeeves and Hooke [14].be pulled upwards towards 1. Thus the scaling power

needs to be <1 and >0 ( ® gure 5). The following were The direct search was unbounded and the single elite
( ® ttest) member from the high quality GA ® t was used® nally used:
as the starting point for the search. Initial step size was

SOS ¾ = �
angles

(DR ¾pp+ DR ¾ps ) taken to be 0 2́5% of each parameter’s value. The routine
ful® lled the condition of ® nding the solution (step size

where
reduction) after approximately 40 000 iterations. The ® t
to the director pro® le was better than the starting ® tÐDR ¾pp =[ (R

theory
pp )

3 Õ (R
data
pp )

3]2

the twist overlaid perfectly and the tilt followed the real
and

DR ¾ps=[ (R
theory
ps )

1/3 Õ (R
data
ps )

1/3]2
.

Figure 6. Parameter errors and director pro® le comparisonFigure 5. The e� ect of non-linear weighting on the re¯ ectivity
data. for the ® t obtained by using ® tness6 scaling and SOS ¾ .
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501Detailing L C cell director pro® les by GA

tilt very closely ( ® gure 7). The complexity of the ® tting
model was then successfully increased from four to six
block liquid crystal layers (see ® gure 8 for the ® t and
associated errors).

The ® nal set of adaptations made to the GA to allow
the ® tting of theoretically produced smectic data can be
summarized as:

(1) use of multiple, short runs;
(2) bound reduction based on result statistics;
(3 ) use of thinned data initially, then switching to the

complete set;
(4 ) ensuring population diversity by making the

mutation rate dynamic;
(5) functional changes to the least-squares error

estimator;
(6) the inclusion of a simple direct search routine.

5. Results from ® tting real smectic data

A cell was produced in a standard way apart from
the use of glass plates of di� erent refractive indices,
required for the HLGM technique to work. The ITO

Figure 8. Parameter errors and director pro® le comparison
for the ® t obtained by repeating the use of a combination
of genetic algorithm and direct search ® tting six layer
data with a six layer model.

coated plates had polymer spun coatings which were
then rubbed and the cell was assembled using UV curing
glue loaded with 3 mm spacer beads; the rubbing was
parallel. It was ® lled with Merck liquid crystal SCE13.
Under a microscope the cell at room temperature was
found to consist of several large regions in the C1U and
C2U states.

Some nematic phase data had previously [3] been
® tted using a single layer approximation to the liquid
crystal with the earlier GA program. This approximation
was now removed with the liquid crystal being represented
by six layers; this is quite a severe test of the modelling.
Fortunately, the twist pro® le compares very favourably
with the previous GA ® t to the data. As can be seen
from ® gure 9, both the GA and GA+ DS ® ts agree well
with the earlier GA ® t, with the GA+ DS ® t showing
closest approximation to a smooth linear variation of
twist between the two surfaces.

When previously ® tting data from the smectic A phase,Figure 7. Parameter errors and director pro® le comparison
a perfect bookshelf had always been assumed. It provedfor the ® t obtained by using a direct search (DS) at the

end of the genetic algorithm (GA) search. interesting to allow a much higher degree of freedom to
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502 D. J. Mikulin et al.

Figure 10. Parameters from ® tting to real smectic A phase
Figure 9. Genetic algorithm and subsequent direct search data, with comparison of single and multilayer approximations.

liquid crystal pro® les found by ® tting experimental data
from the nematic phase data, with comparison with an
earlier single layer ® t to the same data. adapted. If the mid-point of the blocks are joined by a

smooth curve, it is possible to visualize the smooth
director pro® le of the cell (see ® gure 13). The highthe ® tting and explore what the ® t suggests the structure

to be. Figure 10 shows the results. Both the GA and the quality of the data taken at several azimuthal angles,
the high quality ® t and the fact that a chevron formedGA+DS produce twist pro® les very close to straight

lines, as predicted by theory. One might also anticipate in the twist pro® le, together with associated smooth
variation in tilt pro® le, all suggest that the ® nal ® t isthat the tilt should also be a ® xed value, but neither ® t

shows this. Either the cell does not behave according to very close to the actual liquid crystal director pro® le.
simple theory or the ® ts are not close enough to the real
solution to evaluate accurately any tilt values. The latter 6. Conclusions

One of the most striking conclusions is the immensewould appear to be the more likely answer, especially
considering that the ® nal SOS ¾ value is four times that complexity and variability of the search space hyper-

space for HLGM data. Whilst giving de® nite indicationsof the ® nal nematic ® t.
For the smectic C* phase data the director pro® les of correct values for some parameters, the hyperspace

e� ciently conceals the values of others. There is littlefrom the ® nal GA and GA+ DS ® ts are shown in
® gure 11. The quality of the ® t is very high, as shown information available to guide an automatic routine

to the solution. In this situation, the only way to locatein ® gure 12, with only a couple of minor deviations near
some mode peaks. The values for all the surface layer the optimum is by chance. This highly adapted GA,

e� ciently closes in on the solution giving approximateparameters are again very similar to those obtained
from the ® ts to the previous cell. The small change in answers, then relies on mutation alone to perform the

® nal random search. The accuracy to which parametersdirector pro® le between the ® nal GA and ® nal DS
answers suggests that the correct solution has been can be speci® ed is high, being no worse than 50% for
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503Detailing L C cell director pro® les by GA

Figure 13. Smooth, spline interpolation of the six block layerFigure 11. Fit to experimental smectic C* phase data.
® t to real smectic C* phase data.

Figure 12. Fit ( line) to experimental
smectic C* data (at 21 ß C) (+).
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504 Detailing L C cell director pro® les by GA

even imaginary permittivities of thin surface layers and to permit deduction of the likely accuracy of some
parameters. Given su� cient data of high enough quality,is typically within 1% for the liquid crystal parameters.

This level of accuracy is surprising considering the small with an adequate number of features that are su� ciently
in¯ uenced by the structure and optical parameters ofe� ect that some of the layers of the cell have on the

re¯ ected light. the cell, it is now possible automatically to ® t all the
parameters for complete liquid crystal cells to a highComplete liquid crystal cells can be analysed success-

fully with HLGM to give greater detail of optical accuracy.
parameters and director pro® le than any other tech-

The authors acknowledge the support of EPSRC andnique. It has continued to be apparent that the ® nal
Sharp Laboratories of Europe through a CASE award.quality of ® t is intimately linked to both the quality of
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